Regular hamiltonian embeddings of Kn, n and regular triangular embeddings of Kn, n, n

نویسندگان

  • Martin Knor
  • Jozef Sirán
چکیده

We give a group-theoretic proof of the following fact, proved initially by methods of topological design theory: Up to isomorphism, the number of regular hamiltonian embeddings of Kn,n is 2 or 1, depending on whether n is a multiple of 8 or not. We also show that for each n there is, up to isomorphism, a unique regular triangular embedding of Kn,n,n. This is a preprint of an article accepted for publication in Discrete Mathematics c ©2007 (copyright owner as specified in the journal).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Hamiltonian embeddings of the complete bipartite graph Kn,n in an orientable surface

An embedding M of a graph G is said to be regular if and only if for every two triples (v1, e1, f1) and (v2, e2, f2), where ei is an edge incident with the vertex vi and the face fi, there exists an automorphism of M which maps v1 to v2, e1 to e2 and f1 to f2. We show that for n 6≡ 0 (mod 8) there is, up to isomorphism, precisely one regular Hamiltonian embedding of Kn,n in an orientable surfac...

متن کامل

Classification of nonorientable regular embeddings of complete bipartite graphs

A 2-cell embedding of a graph G into a closed (orientable or nonorientable) surface is called regular if its automorphism group acts regularly on the flags mutually incident vertex-edge-face triples. In this paper, we classify the regular embeddings of complete bipartite graphs Kn,n into nonorientable surfaces. Such a regular embedding of Kn,n exists only when n = 2p a1 1 p a2 2 · · · p ak k (a...

متن کامل

Regular embeddings of Kn, n where n is a power of 2. I: Metacyclic case

A 2-cell embedding of a graph in an orientable closed surface is called regular if its automorphism group acts regularly on arcs of the embedded graph. The aim of this and of the associated consecutive paper is to give a classification of regular embeddings of complete bipartite graphs Kn,n, where n = 2. The method involves groups G which factorise as a product XY of two cyclic groups of order ...

متن کامل

Hamiltonian Embeddings from Triangulations

A Hamiltonian embedding of Kn is an embedding of Kn in a surface, which may be orientable or non-orientable, in such a way that the boundary of each face is a Hamiltonian cycle. Ellingham and Stephens recently established the existence of such embeddings in non-orientable surfaces for n = 4 and n 6. Here we present an entirely new construction which produces Hamiltonian embeddings of Kn from tr...

متن کامل

On Biembeddings of Latin Squares

A known construction for face 2-colourable triangular embeddings of complete regular tripartite graphs is re-examined from the viewpoint of the underlying Latin squares. This facilitates biembeddings of a wide variety of Latin squares, including those formed from the Cayley tables of the elementary Abelian 2-groups Ck 2 (k 6= 2). In turn, these biembeddings enable us to increase the best known ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008